Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
J Trace Elem Med Biol ; 78: 127160, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2270959

ABSTRACT

BACKGROUND: In recent months, the current COVID-19 pandemic has generated thousands of studies directly or indirectly related with this disease and/or the coronavirus SARS-CoV-2 causing the infection. On August 22, 2022, the database PUBMED included 287,639 publications containing the term COVID-19. However, in spite of the importance of trace elements in human health, including the immune system, data on the levels of metals/metalloids in COVID-19 patients is very limited. METHODS: The concentrations of As, Cd, Cr, Cu, Hg, Fe, Mg, Mn, Pb, Se, V and Zn were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in 126 serum samples of individuals infected with SARS-CoV-2, as well as in 88 samples of non-infected individuals. Participants were divided into four groups: i) individuals COVID-19 positive (COVID-19 +) with an asymptomatic infection course; ii) individuals suffering mild COVID-19; iii) individuals suffering severe COVID-19, and iv) individuals COVID-19 negative (COVID-19-) (control group). The occurrence of the analyzed metals/metalloids was evaluated along with the biochemical profile, including blood cell counts, lipids, proteins and crucial enzymes. RESULTS: Serum levels of Mg, V, Cr, Cu, Cd, and Pb were higher in COVID-19 positive patients than those in the control group. Although no significant differences were observed between the different groups of patients, the concentrations of Cd, Pb, V and Zn showed a tendency to be higher in individuals with severe COVID-19 than in those showing mild symptoms or being asymptomatic. Arsenic and Hg were rarely detected, regardless if the subjects were infected by SARS-CoV-2, or not. The current results did not show significant differences in the levels of the rest of analyzed elements according to the severity of the disease (asymptomatic, mild and severe). CONCLUSIONS: In spite of the results here obtained, we highlight the need to reduce the exposure to Cd, Pb and V to minimize the potential adverse health outcomes after COVID-19 infection. On the other hand, although a protective role of essential elements was not found, Mg and Cu concentrations were higher in severe COVID-19 patients than in non-infected individuals.


Subject(s)
COVID-19 , Mercury , Metalloids , Trace Elements , Humans , Cadmium , Lead , Pandemics , SARS-CoV-2 , Trace Elements/analysis
2.
Environ Pollut ; 321: 121080, 2023 Mar 15.
Article in English | MEDLINE | ID: covidwho-2252530

ABSTRACT

Medical wastes include all solid and liquid wastes that are produced during the treatment, diagnosis, and immunisation of animals and humans. A significant proportion of medical waste is infectious, hazardous, radioactive, and contains potentially toxic elements (PTEs) (i.e., heavy metal (loids)). PTEs, including arsenic (As), cadmium (Cd), lead (Pb) and mercury (Hg), are mostly present in plastic, syringes, rubber, adhesive plaster, battery wastes of medical facilities in elemental form, as well as oxides, chlorides, and sulfates. Incineration and sterilisation are the most common technologies adopted for the safe management and disposal of medical wastes, which are primarily aimed at eliminating deadly pathogens. The ash materials derived from the incineration of hazardous medical wastes are generally disposed of in landfills after the solidification/stabilisation (S/S) process. In contrast, the ash materials derived from nonhazardous wastes are applied to the soil as a source of nutrients and soil amendment. The release of PTEs from medical waste ash material from landfill sites and soil application can result in ecotoxicity. The present study is a review paper that aims to critically review the dynamisms of PTEs in various environmental media after medical waste disposal, the environmental and health implications of their poor management, and the common misconceptions regarding medical waste.


Subject(s)
Medical Waste Disposal , Medical Waste , Mercury , Metals, Heavy , Refuse Disposal , Animals , Humans , Incineration , Metals, Heavy/analysis , Hazardous Waste/analysis , Solid Waste/analysis
3.
Int J Environ Res Public Health ; 20(5)2023 02 27.
Article in English | MEDLINE | ID: covidwho-2250249

ABSTRACT

The COVID-19 pandemic affected billions of people worldwide, and exposure to toxic metals has emerged as an important risk factor for COVID-19 severity. Mercury is currently ranked as the third toxic substance of global concern for human health, and its emissions to the atmosphere have increased globally. Both COVID-19 and mercury exposure present a high prevalence in similar regions: East and Southeast Asia, South America and Sub-Saharan Africa. Since both factors represent a multiorgan threat, a possible synergism could be exacerbating health injuries. Here, we discuss key aspects in mercury intoxication and SARS-CoV-2 infection, describing the similarities shared in clinical manifestations (especially neurological and cardiovascular outcomes), molecular mechanisms (with a hypothesis in the renin-angiotensin system) and genetic susceptibility (mainly by apolipoprotein E, paraoxonase 1 and glutathione family genes). Literature gaps on epidemiological data are also highlighted, considering the coincident prevalence. Furthermore, based on the most recent evidence, we justify and propose a case study of the vulnerable populations of the Brazilian Amazon. An understanding of the possible adverse synergism between these two factors is crucial and urgent for developing future strategies for reducing disparities between developed and underdeveloped/developing countries and the proper management of their vulnerable populations, particularly considering the long-term sequelae of COVID-19.


Subject(s)
COVID-19 , Mercury , Humans , Brazil , Environmental Exposure , Gold , Mercury/adverse effects , Mercury/analysis , Mercury/toxicity , Pandemics , SARS-CoV-2
4.
Environ Monit Assess ; 195(1): 19, 2022 Oct 24.
Article in English | MEDLINE | ID: covidwho-2242121

ABSTRACT

The health risks associated with consumption of water from river Gomti polluted with potentially toxic elements (PTEs), including As, Fe, Pb, Cd, Mn, Cr, Ni, and Hg were investigated at the initiation of unlocking of COVID-19 lockdown and compared with pre-COVID-19 lockdown status. In the current investigation, the total hazard index (THI) values exceeded the acceptable limit of "unity" at all sampling stations. The use of river water for drinking and domestic purposes by millions of people with high THI values has emerged as a matter of huge concern. The individual hazard quotients associated with Cd and Pb were found to be most severe (> 1). A vivid difference between the THI values during the two study phases indicated the positive impact of COVID-19 lockdown signifying the prominent impact of anthropogenic activities on the PTE concentrations. The closure of local manufacturing units (textile, battery, etc.) emerged as a potential reason for decreased health risks associated with PTE levels. The higher susceptibility of children to health risks in comparison with adults through the values of THI and HQs was interpreted across the study area. Potential remedial measures for PTE contamination have also been suggested in the study.


Subject(s)
COVID-19 , Mercury , Metals, Heavy , Nanostructures , Soil Pollutants , Adult , Child , Humans , Metals, Heavy/analysis , Environmental Monitoring , Cadmium , Lead , Risk Assessment , Communicable Disease Control , Water , Soil Pollutants/analysis
5.
J Environ Sci Health A Tox Hazard Subst Environ Eng ; 57(11): 970-976, 2022.
Article in English | MEDLINE | ID: covidwho-2087557

ABSTRACT

The main goal of this study is to compare concentrations of atmospheric Hg(p) for various particles sizes Total Suspended Particulates (TSP), PM18, PM10, PM2.5, PM1, PM<1 before (2018-2019) and during (2019-2020 and 2020-2021) COVID-19 occurred periods in central Taiwan. In addition, test the statistical differences concentrations of Hg(p) for various particles sizes before and during COVID-19 occurred periods in central Taiwan. Finally, calculate the Hg(p) health risk assessment before and during COVID-19 occurred period in central Taiwan.The result indicated that the mean Hg(p) concentrations in TSP and PM2.5 were higher during (2020-2021) the COVID-19 occurred period than that of the mean Hg(p) concentrations in TSP and PM2.5 before the COVID-19 occurred period. In addition, the Hg(p)concentrations PM18, PM10, PM2.5, PM1 and PM<1 were all increased during the COVID-19 occurred period. The Hg(p) concentrations in TSP were decreased during (2019-2020) the COVID-19 occurred period when compared with that of the before the COVID-19 occurred period. Moreover, significant mean Hg(p) concentrations differences were existed at PM18, PM10 and PM2.5 before and during (2020-2021) COVID-19 occurred periods. Finally, the HQ and HI values for Hg(p) were both increased during COVID-19 occurred periods when compared with before COVID-19 occurred period in this study.


Subject(s)
Air Pollutants , COVID-19 , Mercury , Humans , Air Pollutants/analysis , Particle Size , Environmental Monitoring , COVID-19/epidemiology , Taiwan/epidemiology , Mercury/analysis , Dust , Particulate Matter/analysis , Seasons
6.
Int J Environ Res Public Health ; 19(20)2022 Oct 11.
Article in English | MEDLINE | ID: covidwho-2071413

ABSTRACT

The skin is one of the ways the human body is exposed to toxic elements, including mercury (Hg). Hand creams are cosmetics that should be of high quality due to the fact that they can be used on irritated skin, which can facilitate the absorption of many ingredients. The study consisted of two stages: a consumer questionnaire was conducted regarding the preferences of the respondents, and then the Hg content in hand creams was determined. The survey covered 184 people with an age of 26.9 ± 7.8 years. Based on their preferences, 140 hand creams were selected for the study. The Hg content in the creams was determined by atomic absorption spectrometry with the amalgamation technique. The median content of this toxic element was 4.067 µg/kg. No influence of the country of origin, price, package size, main ingredients, and direction of action on the Hg content was shown. Noncarcinogenic risk assessment using the hazard quotient (HQ) indicated that the tested creams are safe. However, it should be emphasized that Hg has been shown in over 99% of the samples, which indicates that the content of this element in hand creams should be monitored.


Subject(s)
COVID-19 , Mercury , Humans , Young Adult , Adult , Mercury/analysis , Disinfection , Pandemics , Surveys and Questionnaires
7.
Environ Health ; 21(1): 78, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-2038766

ABSTRACT

Artisanal and small-scale mining (ASM) takes place under extreme conditions with a lack of occupational health and safety. As the demand for metals is increasing due in part to their extensive use in 'green technologies' for climate change mitigation, the negative environmental and occupational consequences of mining practices are disproportionately felt in low- and middle-income countries. The Collegium Ramazzini statement on ASM presents updated information on its neglected health hazards that include multiple toxic hazards, most notably mercury, lead, cyanide, arsenic, cadmium, and cobalt, as well as physical hazards, most notably airborne dust and noise, and the high risk of infectious diseases. These hazards affect both miners and mining communities as working and living spaces are rarely separated. The impact on children and women is often severe, including hazardous exposures during the child-bearing age and pregnancies, and the risk of child labor. We suggest strategies for the mitigation of these hazards and classify those according to primordial, primary, secondary, and tertiary prevention. Further, we identify knowledge gaps and issue recommendations for international, national, and local governments, metal purchasers, and employers are given. With this statement, the Collegium Ramazzini calls for the extension of efforts to minimize all hazards that confront ASM miners and their families.


Subject(s)
Mercury , Occupational Exposure , Climate Change , Female , Gold , Humans , Metals , Minerals , Mining
8.
Mycoses ; 65(10): 918-925, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1961701

ABSTRACT

BACKGROUND: Acute Generalised Exanthematous Pustulosis (AGEP) is a rash with multiple sterile intraepidermal or subcorneal non-follicular pustules on edematous papules, with a sudden development and rapid evolution, triggered by drugs, vaccination, insect bites, exposure to mercury, and allergens. OBJECTIVES AND METHODS: We describe a female patient who developed extensive and abnormally prolonged AGEP following exposure to terbinafine and SARS-CoV vaccine. A detailed review of terbinafine-induced-AGEP cases was performed, with the aim of evaluating if the AGEP criteria would follow a different pattern when the disease is triggered by this drug. A PubMed search helped retrieve all terbinafine-induced AGEP case reports. AGEP-specific Sideroff criteria were analysed in terbinafine-induced cases and compared to other trigger causes. CONCLUSIONS: When the AGEP causative drug was terbinafine, a delay in recovery was observed, compared to the existing AGEP criteria when other causes are considered. Terbinafine frequently leads to delayed resolution AGEP probably due to the presence of the drug in the skin for several weeks after exposure, even after discontinuation, and the disease severity may be potentialised by additional factors such as concomitant viral infections or vaccination.


Subject(s)
Acute Generalized Exanthematous Pustulosis , Mercury , Acute Generalized Exanthematous Pustulosis/etiology , Female , Humans , Skin , Terbinafine/adverse effects
9.
J Trace Elem Med Biol ; 73: 127038, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1936887

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a systemic disease affecting multiple organs. Furthermore, viral infection depletes several trace elements and promotes complex biochemical reactions in the body. Smoking has been linked to the incidence of COVID-19 and associated mortality, and it may impact clinical effects, viral and bacterial conversion, and treatment outcomes. OBJECTIVES: To study the relationship between severe acute respiratory syndrome coronavirus type 2 and the elemental concentrations of selenium (Se) and mercury (Hg) in biological samples from smokers and nonsmokers infected with the virus and in healthy individuals. METHOD: We evaluated changes in the concentrations of essential (Se) and toxic (Hg) elements in biological samples (blood, nasal fluid, saliva, sputum, serum, and scalp hair) collected from male smokers and nonsmokers (aged 29-59 years) infected with COVID-19 and from healthy men in the same age group. The patients lived in different cities in Sindh Province, Pakistan. The Se and Hg concentrations were determined using atomic absorption spectrophotometry. RESULTS: Se concentrations in all types of biological samples from smokers and nonsmokers with COVID-19 were lower than those of healthy smokers and nonsmokers. Hg concentrations were elevated in both smokers and nonsmokers with COVID-19. CONCLUSIONS: In the current study, persons infected with COVID-19 had higher concentrations of toxic Hg, which could cause physiological disorders, and low concentrations of essential Se, which can also cause weakness. COVID-19 infection showed positive correlations with levels of mercury and selenium. Thus, additional clinical and experimental investigations are essential.


Subject(s)
COVID-19 , Mercury , Selenium , Hair/metabolism , Humans , Male , Spectrophotometry, Atomic
10.
Lett Appl Microbiol ; 75(4): 933-941, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1891649

ABSTRACT

The COVID-19 pandemic has raised interest in using devices that generate ultraviolet C (UVC) radiation as an alternative approach for reducing or eliminating microorganisms on surfaces. Studies investigating the efficacy of UVC radiation against pathogens use a wide range of laboratory methods and experimental conditions that can make cross-comparison of results and extrapolation of findings to real-world settings difficult. Here, we use three different UVC-generating sources - a broad-spectrum pulsed xenon light, a continuous light-emitting diode (LED), and a low-pressure mercury vapour lamp - to evaluate the impact of different experimental conditions on UVC efficacy against the coliphage MS2 on surfaces. We find that a nonlinear dose-response relationship exists for all three light sources, meaning that linear extrapolation of doses resulting in a 1-log10 (90%) reduction does not accurately predict the dose required for higher (e.g. 3-log10 or 99.9%) log10 reductions. In addition, our results show that the inoculum characteristics and underlying substrate play an important role in determining UVC efficacy. Variations in microscopic surface topography may shield MS2 from UVC radiation to different degrees, which impacts UVC device efficacy. These findings are important to consider in comparing results from different UVC studies and in estimating device performance in field conditions.


Subject(s)
COVID-19 , Mercury , Disinfection/methods , Humans , Levivirus , Pandemics , Ultraviolet Rays , Xenon
11.
Talanta ; 248: 123630, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1867809

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health. Current methods such as reverse transcription polymerase chain reaction (qRT-PCR) are complex, expensive, and time-consuming. Rapid, and simple screening methods for the detection of SARS-CoV-2 are critically required to fight the current pandemic. In this work we present a proof of concept for, a simple optical sensing method for the screening of SARS-CoV-2 through its spike protein subunit S1. The method utilizes a target-specific extractor chip to bind the protein from the biological specimens. The disulfide bonds of the protein are then reduced into a biothiol with sulfhydryl (SH) groups that react with a blue-colored benzothiazole azo dye-Hg complex (BAN-Hg) and causes the spontaneous change of its blue color to pink which is observable by the naked eye. A linear relationship between the intensity of the pink color and the logarithm of reduced S1 protein concentration was found within the working range 130 ng.mL-1-1.3 pg mL-1. The lowest limit of detection (LOD) of the assay was 130 fg mL-1. A paper based optical sensor was fabricated by loading the BAN-Hg sensor onto filter paper and used to screen the S1 protein in spiked saliva and patients' nasopharyngeal swabs. The results obtained by the paper sensor corroborated with those obtained by qRT-PCR. The new paper-based sensing method can be extended to the screening of many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method has strong potential for screening viruses at pathology labs and in remote areas that lacks advanced scientific infrastructure. Further clinical studies are warranted to validate the new sensing method.


Subject(s)
COVID-19 , Mercury , COVID-19/diagnosis , Cysteine , Humans , Membrane Proteins , SARS-CoV-2/genetics
12.
Photobiomodul Photomed Laser Surg ; 40(4): 273-279, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1830952

ABSTRACT

Objective: We report on the development and characterization of a UV-C light-emitting diode (LED) 280 nm cluster prototype device designed for the rapid disinfection of SARS-CoV-2 coronaviruses. The device was evaluated against the Betacoronavirus mouse hepatitis virus-3 strain, and its virucidal capacity was probed as a function of different applied UV-C doses versus different situations concerning irradiation distances. Background: UV-C LEDs are light emitters that offer advantages over low-pressure mercury lamps, such as quasimonochromaticity, lower electrical power consumption, instant on/off with the instant full-power operation, unlimited on/off cycles for disinfection schemes, and a much longer lifetime operation, in addition to portability aspects, as well as UV-C LEDs do not contain heavy metal in its composition such as mercury, found in ultraviolet germicidal irradiation (UVGI) lamps. Results: This novel device reached a 99.999% elimination rate at a distance of 9 cm at all the tested irradiation times (dose dependence), demonstrating that it took only 30 sec to achieve this inactivation rate. Its virucidal effectivity in rapid virus inactivation was demonstrated. Conclusions: We conclude that the HHUVCS cluster device (λp = 280 nm) provides a rapid virucidal effect against the SARS-CoV-2 coronavirus. The current research should encourage further advances in UV-C LED-based devices designed for the inactivation of SARS-CoV-2 virus on surfaces, in air, and in liquids.


Subject(s)
COVID-19 , Mercury , Animals , Disinfection , Mice , SARS-CoV-2 , Ultraviolet Rays
13.
Biol Trace Elem Res ; 200(5): 2510-2518, 2022 May.
Article in English | MEDLINE | ID: covidwho-1803099

ABSTRACT

Despite the high consumption of hydroalcoholic gels worldwide and particularly in Côte d'Ivoire since the outbreak of the COVID-19 pandemic, very few studies have measured the heavy metal content and human exposure in this product. Thus, 30 samples from supermarkets in Abidjan, Côte d'Ivoire, were collected for the study of risk assessment of exposure to heavy metals contained in hydroalcoholic gels. This study consists of the characterization of the danger by calculating the carcinogenic and non-carcinogenic risk by skin contact. Almost all samples analysed contain trace of lead, cadmium and mercury but at concentrations below the Canadian limit in cosmetic products applied to the skin and below the US FDA limit as an impurity in colour additives used in cosmetic products. The mean values of chronic daily intake via dermal absorption (CDIdermal) for adults were found in the order of mercury > lead > cadmium. The health risk estimation indicated that the mean total hazard quotient for dermal adsorption (HIdermal) obtained is 7.10 × 10-5 ± 5.52 × 10-5. This value was below 1, the acceptable limit, representing a non-carcinogenic risk for Abidjan residents through dermal adsorption. Moreover, the incremental lifetime cancer risk (ILCR) evaluation for lead and cadmium was insignificant, and the cancer risk can be neglected, but in case of their overusing, they can cause long-term health problems for consumers.


Subject(s)
COVID-19 , Mercury , Metals, Heavy , Neoplasms , Adult , Cadmium/analysis , Canada , Cote d'Ivoire/epidemiology , Environmental Monitoring , Gels/analysis , Humans , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Pandemics , Risk Assessment
14.
Int J Environ Res Public Health ; 19(7)2022 03 26.
Article in English | MEDLINE | ID: covidwho-1785632

ABSTRACT

Indonesia is host to a long history of gold mining and is responsible for a significant contribution to world gold production. This is true not only with regard to large gold mining companies but also to small-scale mining groups comprised of people and enterprises that participate in the gold industry of Indonesia. More than two thousand gold mining locations exist in present day Indonesia. Artisanal and small-scale gold mining (ASGM) sites are spread out across thirty provinces in Indonesia, and have provided work opportunities and income for more than two million people. However, the majority of ASGM activities use rudimentary technologies that have serious impacts upon the environment, public health, and miners' safety, which in turn generate socio-economic impacts for people residing around the mine sites. Moreover, many ASGMs are not licensed and operate illegally, meaning that they are immune to governmental regulation, and do not provide income to the regions and states via taxes. The possibility for more prudent management of ASGM operations could become a reality with the involvement and cooperation of all relevant parties, especially communities, local government, police, and NGOs.


Subject(s)
Mercury , Miners , Gold , Humans , Indonesia , Mercury/analysis , Mining , Public Health
15.
J Prev Med Public Health ; 54(5): 376-379, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1737129

ABSTRACT

Elemental mercury exposure can result in significant toxicity. Source decontamination and remediation are often required after larger elemental mercury exposures, but the details of these processes are infrequently reported. In the case described herein, a 64-year-old woman and her husband were exposed to elemental mercury in their home after the husband purchased it online for the purpose of recreational barometer calibration. After the mercury reportedly spilled during the calibration process, a vacuum cleaner was used to decontaminate the affected surface; this led to extensive mercury contamination of the home. The couple was relocated from the home while remediation occurred over the course of several weeks. Vacuum cleaning of an elemental mercury spill can lead to extensive volatilization and recirculation of mercury vapor. For smaller mercury spills, careful removal of visible mercury beads by using an eyedropper, cardboard, and masking tape is recommended. Larger spills require professional decontamination and remediation and may necessitate involvement of governmental resources. Vacuum cleaning should not be used as an initial method of decontamination after elemental mercury exposure. Careful attention to source decontamination can reduce the emotional and financial costs associated with extensive remediation after elemental mercury exposure.


Subject(s)
Mercury , Decontamination , Environmental Exposure , Female , Humans , Middle Aged , Spouses , United States
16.
Environ Sci Technol ; 55(12): 8203-8214, 2021 06 15.
Article in English | MEDLINE | ID: covidwho-1253866

ABSTRACT

Air pollution exposure is a risk factor for arrhythmia. The atrioventricular (AV) conduction axis is key for the passage of electrical signals to ventricles. We investigated whether environmental nanoparticles (NPs) reach the AV axis and whether they are associated with ultrastructural cell damage. Here, we demonstrate the detection of the shape, size, and composition of NPs by transmission electron microscopy (TEM) and energy-dispersive X-ray spectrometry (EDX) in 10 subjects from Metropolitan Mexico City (MMC) with a mean age of 25.3 ± 5.9 and a 71-year-old subject without cardiac pathology. We found that in every case, Fe, Ti, Al, Hg, Cu, Bi, and/or Si spherical or acicular NPs with a mean size of 36 ± 17 nm were present in the AV axis in situ, freely and as conglomerates, within the mitochondria, sarcomeres, lysosomes, lipofuscin, and/or intercalated disks and gap junctions of Purkinje and transitional cells, telocytes, macrophages, endothelium, and adjacent atrial and ventricular fibers. Erythrocytes were found to transfer NPs to the endothelium. Purkinje fibers with increased lysosomal activity and totally disordered myofilaments and fragmented Z-disks exhibited NP conglomerates in association with gap junctions and intercalated disks. AV conduction axis pathology caused by environmental NPs is a plausible and modifiable risk factor for understanding common arrhythmias and reentrant tachycardia. Anthropogenic, industrial, e-waste, and indoor NPs reach pacemaker regions, thereby increasing potential mechanisms that disrupt the electrical impulse pathways of the heart. The cardiotoxic, oxidative, and abnormal electric performance effects of NPs in pacemaker locations warrant extensive research. Cardiac arrhythmias associated with nanoparticle effects could be preventable.


Subject(s)
Electronic Waste , Mercury , Nanoparticles , Tachycardia, Atrioventricular Nodal Reentry , Aged , Arrhythmias, Cardiac/chemically induced , Atrioventricular Node , Humans , Industrial Waste , Mexico , Titanium
17.
Environ Res ; 197: 111142, 2021 06.
Article in English | MEDLINE | ID: covidwho-1184965

ABSTRACT

Pollution of water linked to microbial decontamination and extensive use of sodium chlorite (NaClO2) as a disinfectant, especially in the face of the current COVID-19 situation, is a serious water pollution issue that needs to be addressed. In this context, an environmentally friendly and cost-effective method has been developed for the biomimetic synthesis of Ag nanospheres (Ag NSs) using aqueous extract of Piper nigrum for the detection of chlorite (ClO2-) and mercury (Hg2+) ions. The strong antioxidant properties of the biomolecules present in the Piper nigrum extract reduce silver ions (Ag+) to Ag0. After optimization of the formulation parameters, it was observed that 1 mL of piper nigrum extract was sufficient to reduce and stabilize 100 mL of 1.5 mM of Ag+ in 2.5 h at 30 °C. X-ray diffraction (XRD) pattern of Ag NSs revealed their crystalline nature and the characteristic Bragg's diffraction peaks confirmed their face cubic crystal (FCC) lattice. The characteristic reddish-brown color and absorption surface plasmon resonance (SPR) band at 435 nm confirmed the successful fabrication of Ag NSs. Kinetic analysis revealed a three-phase growth pattern involving nucleation, growth and stabilization. Transmission electron microscopy (TEM) and High-resolution transmission electron microscopy (HRTEM) micrograms, showed spherical NSs with narrow polydispersity with particle size ranging from 10 to 30 nm. The synthesized NSs were exposed to various metal ions and anions. The absorption intensity of Ag NSs quenched in the presence of mercury ions (Hg2+) among the cations and Chlorite ions (ClO2-) among the anions. The limit of detection (LOD) of 7.47 µM and 1.11 µM was evaluated from the calibration curve for Hg2+ and ClO2-, respectively. Based on these promising results, it is suggested that the method reported is a low-cost and one step biogenic protocol for the synthesis of Ag NSs and their employment for the detection of Hg2+ and ClO2-ions.


Subject(s)
COVID-19 , Mercury , Metal Nanoparticles , Nanospheres , Chlorides , Humans , Kinetics , SARS-CoV-2 , Silver , Water
18.
Food Chem Toxicol ; 146: 111809, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-866691

ABSTRACT

Multiple medical, lifestyle, and environmental conditions, including smoking and particulate pollution, have been considered as risk factors for COronaVIrus Disease 2019 (COVID-19) susceptibility and severity. Taking into account the high level of toxic metals in both particulate matter (PM2.5) and tobacco smoke, the objective of this review is to discuss recent data on the role of heavy metal exposure in development of respiratory dysfunction, immunotoxicity, and severity of viral diseases in epidemiological and experimental studies, as to demonstrate the potential crossroads between heavy metal exposure and COVID-19 severity risk. The existing data demonstrate that As, Cd, Hg, and Pb exposure is associated with respiratory dysfunction and respiratory diseases (COPD, bronchitis). These observations corroborate laboratory findings on the role of heavy metal exposure in impaired mucociliary clearance, reduced barrier function, airway inflammation, oxidative stress, and apoptosis. The association between heavy metal exposure and severity of viral diseases, including influenza and respiratory syncytial virus has been also demonstrated. The latter may be considered a consequence of adverse effects of metal exposure on adaptive immunity. Therefore, reduction of toxic metal exposure may be considered as a potential tool for reducing susceptibility and severity of viral diseases affecting the respiratory system, including COVID-19.


Subject(s)
Air Pollution/adverse effects , COVID-19/epidemiology , Environmental Exposure/adverse effects , Heavy Metal Poisoning/epidemiology , Metals, Heavy/adverse effects , Smoking/adverse effects , Animals , Arsenic/adverse effects , COVID-19/virology , Cadmium/adverse effects , Heavy Metal Poisoning/etiology , Humans , Lead/adverse effects , Mercury/adverse effects , Respiratory Tract Diseases/epidemiology , Respiratory Tract Diseases/virology , SARS-CoV-2 , Severity of Illness Index
20.
Sci Total Environ ; 750: 142323, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-752858

ABSTRACT

Controlling anthropogenic mercury emissions is an ongoing effort and the effect of atmospheric mercury mitigation is expected to be impacted by accelerating climate change. The lockdown measures to restrict the spread of Coronavirus Disease 2019 (COVID-19) and the following unfavorable meteorology in Beijing provided a natural experiment to examine how air mercury responds to strict control measures when the climate becomes humid and warm. Based on a high-time resolution emission inventory and generalized additive model, we found that air mercury concentration responded almost linearly to the changes in mercury emissions when excluding the impact of other factors. Existing pollution control and additional lockdown measures reduced mercury emissions by 16.7 and 12.5 kg/d during lockdown, respectively, which correspondingly reduced the concentrations of atmospheric mercury by 0.10 and 0.07 ng/m3. Emission reductions from cement clinker production contributed to the largest decrease in atmospheric mercury, implying potential mitigation effects in this sector since it is currently the number one emitter in China. However, changes in meteorology raised atmospheric mercury by 0.41 ng/m3. The increases in relative humidity (9.5%) and temperature (1.2 °C) significantly offset the effect of emission reduction by 0.17 and 0.09 ng/m3, respectively, which highlights the challenge of air mercury control in humid and warm weather and the significance of understanding mercury behavior in the atmosphere and at atmospheric interfaces, especially the impact from relative humidity.


Subject(s)
Air Pollutants , Air Pollution , Coronavirus Infections , Coronavirus , Mercury , Pandemics , Pneumonia, Viral , Air Pollutants/analysis , Air Pollution/analysis , Beijing , Betacoronavirus , COVID-19 , China , Environmental Monitoring , Humans , Mercury/analysis , Meteorology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL